Customization of Optoelectronic Detectors

Part Two in a Six-Part Series

>> Download a PDF of the version of the “Customization of Optoelectronic Detectors” article.

Utilizing our 30 years of experience in optoelectronics, Marktech’s customization process focuses on customer needs and applications. Instead of using standardized–but perhaps non-optimized–parts, Marktech allows advantageous custom product variations to enhance your product design.

Custom packaging and electrical sorting of products offer further differentiation. Marktech provides the designer with insights concerning custom variations–variations that optimize electrical, optical, and thermal characteristics–without the need for large volume commitments. With manufacturing facilities in California, Germany, and Japan, Marktech is a vertically-integrated company, allowing us to produce detector components quickly, thus decreasing your time to market. We can even produce your entire package in the United States, if need be.

To solve your needs, Marktech engineers will discuss with you:

  • Application needs specific to your project
  • Optimization recommendations for component and assembly packaging, technology, and thermal and electrical parameters
  • Manufacturing of dedicated end-products in support of your specifications and needs

In this second installment in our six-part series on Marktech’s customization capabilities, we focus on optoelectronic detector materials, to allow options to customize detector components for optimal mating with compatible emitters.

Overview

Photodetectors are sensors, detecting light and converting the photons into measurable currents, and are therefore useful for applications ranging from water faucets to nuclear transient events. With varied technologies and packaging, specific measurements can be made that are ideal for your applications.

Marktech devices are solely solid-state devices (there are no photomultiplier tubes in our product line, although our products may supply similar functionality). Response rates can be as fast as 300 picoseconds. Light levels that can be measured range from tens of photons to massive levels. Wavelengths can range from 150nm to greater than 3000nm.

Each photo­­detector uses a p-n junction as part of either a photodiode or phototransistor construction, effectively working as an inverse function from the typical operation of a light emitting diode. Depending on the technology used, the detectors provide current response to specific ranges of light wavelength.

Detector Materials and Characteristics: The materials used may be silicon, GaP, or InGaAs. The P and N epitaxial layers of the wafer materials can be optimized for specific customer specifications and desired characteristics, including minimum reflection, Optimized Responsivity, low dark current, minimum series resistance, low capacitance, fast response, low cross talk, and more. The detectors can be packaged in a variety of packages from metal can and standard 3mm and 5mm plastic packages, to surface-mount…or virtually any custom package assembly. Detector applications range from simple door opening to the latest cancer PET scan system.

Detector Wavelengths: Available products have wavelengths varying from 150nm (UV) through the visible range (440 to 700nm), through SWIR (short wavelength infrared) (up to 2600nm), and beyond to MWIR (medium wavelength IR) (>3000nm). This link to our online Product Selector Guide helps in the selection of the emitter wavelengths, while also indicating compatible detectors. Tight binning by Marktech can provide uniform wavelength characteristics to optimize the application and mating detectors’ sensitivities, providing process-controlled, uniform product solutions.

Marktech Photodetector Variations:

  • Silicon photodetectors (400nm to 1100nm): photovoltaic, photoconductive photodiodes, and phototransistors
  • Silicon avalanche photodiodes (400nm to 1100nm, with 800nm, 905nm optimization)
  • UV detectors (150nm to 450nm)
  • InGaAs PIN photodetectors (800nm to 2600nm) and SWIR (short wavelength IR) detectors (1050nm to 1720nm)

Products are also available in epitaxial wafer form, and can be packaged as photoreflectors, arrays, and hybrid parts. For part listing and additional information, visit http://marktechopto.com/marktech-detectors.cfm

Silicon Photodetectors (400nm to 1100nm): Marktech’s silicon phototransistors can be utilized in applications requiring very high sensitivity, uniform response, and increased reliability such as card readers and optical sensors.

The photovoltaic silicon photodetectors have a spectral sensitivity from near-ultraviolet, through the visible range, to Near IR (400nm to 1100nm). These are used in applications such as medical, analytical, communications, spectroscopy equipment, and sensing requiring broadband sensitivity with enhancements in the blue/green region. These devices can exhibit moderate-speed response, high sensitivity, and low noise. Devices are available as either phototransistors or photodiodes.

The photoconductive silicon photodetectors are suitable for high-speed and high-sensitivity applications. The spectral range extends from 350nm to 1100nm, making these photodiodes ideal for visible and near-IR applications, including such AC applications as detection of pulsed LASER sources and LEDs.

Marktech’s broad line of silicon photodetectors are provided in a variety of package types including through-hole plastic, ceramic, metal-can, surface mount, and full custom. These devices are available with standard silicon die having a spectral sensitivity of approximately 400nm to 1100nm, or with special UV-enhanced silicon chips with sensitivity in the lower UV-A range. Custom active areas and multi-element chips can also be manufactured to suit your application. Many of our wafers/chips are manufactured in the USA and optimized to insure uniform and consistent performance with high reliability. These devices are well-suited for visible and near-IR applications requiring high speed and high sensitivity as well as low noise such as optical switches and optical communications.

Marktech silicon detectors can be obtained with integrated filters for reduced visible light interference or optimized for your required spectral output. In addition to our various package styles available off-the-shelf, Marktech can integrate multiple detectors and/or emitter detector combinations in a single package type.

Silicon photodetector variations:

  • Silicon phototransistors
  • Avalanche Photodiodes
  • Silicon photodiodes in SMT, through-hole DIL, and metal can packaging
  • Photodiode arrays
  • Dual/quadrant photodiodes
  • X-ray detectors
  • Multichip photodiodes for expanded wavelength or sensitivity
  • Silicon photovoltaic PIN photodiodes
  • Silicon photoconductive PIN photodiodes
  • Silicon PIN photodiodes with enhanced blue sensitivity
  • Silicon photodiode arrays
  • Differential photodiodes

Customized optimizations:

  • UV blue-green NIR (near-IR)
  • 1064nm, 2200nm, and 2600nm
  • Minimum reflection
  • Low dark current
  • Minimum series resistance
  • Low capacitance
  • Low carrier lift time
  • Fast response
  • Low cross-talk

Customized packaging:

  • Tested wafers
  • Chips
  • Hermetic packaged devices
  • Hybrids (detector/amplifier in one package)
  • Detector/filter combinations (bandpass or color glass)
  • Hybrid/modules (ceramic or COB [chip on board])

Typical industries served: Medical, optical communications, industrial, scientific, and analytical

Common applications: Remote controls, optical encoders, position sensors, fiber optics, barcode readers, and chemical analysis

Silicon Avalanche Photodiodes (400nm to 1100nm, optimized for 800nm and 905nm):  Avalanche photodiodes are ideal for high-speed and low-light level detection in the near-infrared range. These detectors have become the semiconductor equivalent of photomultipliers in many applications including data communication, LIDAR, instrumentation, and photon counting. In addition, cost-effective customization of these APDs is offered to meet exacting design specifications. Operation voltage selection and voltage breakdown (Vbr) binning, wavelength-specific band-pass filtering, and hybridization options are among many of the application-specific solutions available at Marktech.

Marktech APDs have an internal gain mechanism, fast time response, low dark current, and high sensitivity in the near-infrared region. These APDs are recommended for applications that require high bandwidth or where internal gain is needed to overcome high pre-amp noise. In addition, Marktech APDs provide higher sensitivity than a standard photodiode and are ideal for extreme low-light level detection and short pulse detection. APDs are essentially photodetectors that provide an amplification gain stage through avalanche multiplication. They are similar to photomultipliers but are solid state semiconductor devices.

Silicon Avalanche photodiodes (Si APDs) are the preferred optical detectors for applications where the wavelength lies between 400nm and 1100nm (with 800nm and 905nm optimized sensitivities), and exhibit high speed and low noise for visible to near-IR applications. Standard versions are available in three active area diameter sizes: 200, 500, and 800um and are offered in hermetic TO cans and can also be supplied in cost-effective LCC packages.

UV Detectors (150nm to 570nm):  UV LEDs are becoming more prevalent in the industry, replacing old technology such as mercury lamps. As a result, the need for UV detection is also increasing. Marktech UV detectors are offered in a variety of TO metal can-type packages from TO-18 to TO-39 with a special UV glass lens to ensure optimum lifetime and the least amount of material degradation. Marktech offers both standard and custom packaging including components, assemblies, and bare chip options to match your application requirements

Our UV detectors use materials including GaP Schottky, GaN, and SiC. A die can be packaged individually in a variety of hermetically sealed packages or multiple die can be integrated in a custom package to suit your specific application. Marktech UV detectors offer superior stability over time and high device sensitivity with low dark current.

UV-A: Marktech also offers, on a custom basis, silicon-based UV detectors, which are designed for operation in the UV-A range. These devices are available in plastic and surface mount packages in addition to the standard TO metal can-type.

Typical industries served: Medical, industrial, scientific and analytical, environmental/ecological, and commercial

Common applications: Biomedical/chemical analysis, UV emitter output monitoring, outdoor UV sensors, gas/flame detection, spectrometers and wearable devices, emitter calibration, UV dosimetry and imaging including solar UV measurements and astronomical studies, flame sensors (fire alarm systems, missile plume detection, combustion engine control), spatial optical communications (intra- and inter-satellite secured communications), and biological and chemical sensors (ozone detection, determination of pollution levels in air, and biological agents detection)

InGaAs PIN Photodetectors (800nm to2600nm):  This high-sensitivity and high-reliability product series is ideally suited for applications in the SWIR (short wavelength infrared) wavelength range. This high-sensitivity and high-reliability product is ideally suited for optical communication devices.

Photodiode chip active area sizes from 0.1mm to 3.0mm are available to provide the optimum balance between low dark current, high speed, and light sensitivity. This allows for increased flexibility and options in a variety of applications ranging from fiber optics and high-speed optical communications to medical and chemical analysis.

Integrated TE (thermal electric) cooling is currently not utilized on our standard PIN photodiodes, thereby reducing costs and improving overall efficiency.

In addition to PIN photodiodes, Marktech offers foundry services for epitaxial growth of SWIR wafers in the 1.0um to 2.6um range, using InP material as the base substrate. Marktech is currently producing these high-reliability wafers in 2″, 3″, and 4″ diameters. Among the applications for these wafers are photodetectors, linear arrays, and image sensors. Photodetectors processed using our epitaxial wafers provide significant advantages, including lower dark current, better shunt resistance, and overall improved performance at lower operating temperatures.

Marktech manufactures InP PIN photodiodes using InGaAs/InP technology, which have a spectral sensitivity in the 800nm to 2600nm range for applications requiring low dark current, high speed, and sensitivity such as fiber optics and optical communications. Marktech’s detector die can be placed in a variety of packages from metal can TO-5, TO-18, and TO-46 to surface mount and standard 3mm and 5mm plastic packages. We can also incorporate the detector die in custom-designed assemblies.

SWIR (Short Wavelength IR) Emitters (1050nm to 1720nm): Marktech Optoelectronics is one of only a handful of manufacturers that supply emitters in the extended wavelength or SWIR range. Marktech’s standard product offering includes both through-hole and surface mount packages with wavelengths from 1050nm to 1720nm and operating currents ranging from 20mA to 350mA for high-power applications. Higher wavelength ranges up to 3000nm are available in specific package types

The SWIR wavelength range requires specialized optical detectors since standard silicon detectors have a maximum sensitivity limit of up to only approximately 1100nm. Marktech produces a line of InGaAs detectors that are optimized for sensing light in this SWIR wavelength range. These detectors can be obtained as an individual, discrete component, or they can be combined with a silicon sensor to cover the complete spectrum of light from the visible to the SWIR range. Marktech also offers the option to custom-produce multi-element devices with emitter and detector chips in the same package.

The Marktech extended wavelength standard SWIR package offerings include:

  • TO-46 flat
  • TO-46 lens
  • TOPLED PLCC4
  • SMD 1206
  • SMD 1206 lens
  • SMD high-power black

Marktech’s optoelectronic manufacturing and assembly capabilities include:

  • SMD, through-hole, and chip on board assembly
  • High-density pick and place
  • Prototyping
  • Small- to high-volume production runs
  • PCB design and fabrication
  • Single or multi-layer
  • Flexible or rigid
  • Aluminum, FR4, ceramic, and polyimide
  • Schematic capture
  • PCB design
  • Simulation
  • CAD/CAM
  • Consigned or purchased materials
  • In-circuit testing
  • Reliability testing
  • Potting
  • Conformal coating
  • IPC standard assembly
  • Use of your part numbering system
  • Shipped to your packaging requirements

Additional outsourced capabilities include:

  • Plastic injection molding
  • Metal work fabrication
  • Optical analysis
  • Thermal analysis

Photodetector Applications:

  • Astronomy: Space-based telescopes with far-IR wavelengths
  • Automotive: Driver vision in low light, collision detectors, twilight detection
  • Banking: Counterfeit detection in currency
  • Communication: Fiber optic communication (typically operates in the infrared wavelength) with very high rise time (response rate) to allow high data rates of up to 100 gigabits/second, silicon photodiodes used for short wavelength links (650 for POF and 850 for glass MM fiber), long wavelength systems used in InGaAs (indium gallium arsenide) detectors as they have lower noise than germanium (which allows for more sensitive receivers), very high speed systems using avalanche photodiodes (APDs) that are biased at high voltage to create gain in the photodiode
  • Chemical/biological: High-speed detection
  • Consumer: Household electronics (radios, DVD players, TVs, computer sensors), cameras
  • Environmental: Detection via spectroscopy for pollutants and particulates, global temperature monitoring via space-based sensors, thermal imaging for home and business heat loss/efficiency, recycling (material identification from fluorescence of plastics/glass)
  • Industrial: Robotic imaging/sensing, video camera imaging, process control through temperature monitoring, arc light detection (ultraviolet wavelength detectors are offered in applications where mercury lamps and UV LEDs are used), bar coding
  • Medical: Pulse oximeters, CAT, and PET scans
  • Military: Night vision applications, intake/exhaust temperatures for aerospace
  • Municipal: Monitoring of water purification for municipal water supply, pools
  • Safety/Security: Smoke/flame detection, TSA security

SWIR for Night Vision Applications

Arrays of SWIR detectors have been utilized in SWIR night vision systems, which rely on the intense night glow that can illuminate the scenery even when there is complete darkness in the visible spectrum.

Marktech Optoelectronics - Customization of Optoelectronic Detectors

SWIR Detector for Homeland Security Applications

Customization of Optoelectronic Detectors - SWIR for Security Applications - Marktech

Applications in Medical & Biophotonics

SWIR detectors can help realize the non-invasive imaging methods, for example, optical coherence tomography (OCT) systems, utilizing SWIR to exploit the low scattering properties of >1μm light to see the previously unreachable, thick parts of the eye’s cornea.

Customization of Optoelectronic Detectors - Applications in Medical and Biophotonics - Marktech

SWIR Industrial Applications

Inspection for High-Temperature Manufacturing Processes: Web inspection of continuous processes such as high-temperature manufacturing processes and quality controls.

Customization of Optoelectronic Detectors - SWIR Industrial Applications - Marktech Optoelectronics

Recycled Plastics Resorting Application: SWIR can be used in the recycled plastics industry due to C-H, O-H, and N-H found in plastics, and uses wavelength around 1.0-2.2μm.

Customization of Optoelectronic Detectors - Recycled Plastic Resorting - Marktech Optoelectronics

SWIR Applications in Agriculture

SWIR detectors, such as 1240nm, 1640nm, and 2130nm, combined with visible detectors, can be applied in some remote sensors for soil moisture and agricultural drought monitoring.

SWIR imaging can provide more information about rock and soil features better than visible images due to the reflection characteristics of rock and soil in the 1.8um to 2.5um range.

Customization of Optoelectronic Detectors - SWIR Applications in Agriculture - Marktech Optoelectronics

LIDAR Applications

LIDAR (light detection and ranging) is a surveying method that measures distance to a target by illuminating that target with a laser light. LIDAR uses laser light pulses, while radar uses radio waves. Avalanche photodiodes enable the LIDAR application as a remote sensing technology that optically measures properties of scattered light to find range and/or other information about a distant target.

Customization of Optoelectronic Detectors - LIDAR Applications - Marktech Optoelectronics

About Marktech Optoelectronics:
Founded in 1985, the Albany, New York-based Marktech Optoelectronics has built a strong industry pedigree for R&D excellence. As a renowned engineering, design, and test facility, Marktech’s unique core competencies are rooted in its field-proven capabilities to produce custom LED and photodetector components and assemblies in virtually any quantities. Standard product samples and ranges are offered to customers globally via Marktech’s longtime distribution partner, Digi-Key Corporation. In addition, the company’s engineering team has the necessary full in-house capabilities for the testing of complete electrical and optical characteristics, as well as to perform end-to-end examinations of all optical components, from die level to finished product designs. Marktech is also a Cree Solution Provider for high-brightness LEDs and materials. For more information about Marktech Optoelectronics and its product offerings, visit www.marktechopto.com.

Marktech Announces Custom Reticle Capabilities

One of the first optoelectronics companies
to offer a 10-micron red dot reticle

April 27, 2017

Marktech Optoelectronics Custom Reticle Capabilities
Custom Reticle Capabilities

LATHAM, NEW YORK… Marktech Optoelectronics, a Latham, New York-based manufacturer of standard and custom optoelectronics, has announced their new custom reticle capabilities. This display technology is used in applications, which include rifle scopes, binoculars, cameras, and range finders. All of Marktech’s reticles include precise illumination for low-light environments and are highly customizable based on customer specifications.

Reticle: A series of fine lines or fibers in the eyepiece of a sighting device used as a measuring scale or an aid in locating objects.

The company has also introduced one of the first 10-micron red dot chips available on the market today. “For shorter distances, a standard 50- to 80-micron red dot is probably fine,” explains Vincent Forte, Marktech’s chief technology officer, “but for longer distances, a 10-micron red dot is preferred; the smaller the dot, the more accurate the device.”

Marktech can design and manufacture a red dot and/or reticle in nearly any shape, size, or configuration, and this unique customization capability gives them an advantage in the industry. “We have the ability to create a reticle and/or red dot in conjunction with a 7-segment numeric or alphanumeric display and/or a 15 to 20-micron crosshair segment,” notes Forte. “We can assemble the die into any type of standard or custom package or chip-on-board [COB] assembly. We can even custom-design a reticle to have the segment and dot independently driven, which is quite unique in the industry.”

Devices that typically use red dots and reticles include telescopes, telescopic rifle sights, microscopes, cameras, binoculars, and other types of instrumentation. Range finders typically use a red dot and reticle in conjunction with an Avalanche photodiode (APD) as the detector, also available from Marktech. The industries most often using reticles and red dots are military, technology, recreation, or anywhere that needs a microscopic illumination source. For more information on Marktech’s custom reticle capabilities, visit www.marktechopto.com.

About Marktech:
Founded in 1985, the Albany, New York-based Marktech Optoelectronics has built a strong industry pedigree for R&D excellence. As a renowned engineering, design, and test facility, Marktech’s unique core competencies are rooted in its field-proven capabilities to produce custom LED and photodetector components and assemblies in virtually any quantities. Standard product samples and ranges are offered to customers globally via Marktech’s longtime distribution partner, Digi-Key Corporation. In addition, the company’s engineering team has the necessary full in-house capabilities for the testing of complete electrical and optical characteristics, as well as to perform end-to-end examinations of all optical components, from die level to finished product designs. Marktech is also a Cree Solution Provider for high-brightness LEDs and materials. For more information about Marktech Optoelectronics and its product offerings, visit www.marktechopto.com.

So tell us: What do you want to build?

Bring Marktech your idea; we can manage the entire process for you, from design to prototype, from testing to production and QA. www.marktechopto.com

###

Marktech Optoelectronics and Digi-Key Now Offer Custom-Made Photodetectors

Custom-Made Photodetectors - Marktech Optoelectronics
Custom-Made Photodetectors

Marktech Optoelectronics has teamed up with Digi-Key Electronics, a global electronic components distributor, to offer the ability to obtain custom-made photodetectors specifically designed and optimized to meet customer specifications.

The custom-made photodetectors can be made from any of the following Marktech product lines: silicon photovoltaic or photoconductive photodiodes, avalanche photodiodes, phototransistors, or InGaAs PIN photodiodes. Custom device packaging is also available, either to customer specifications or recommended by Marktech to best suit the customer’s application.

“Marktech’s specialty has been in the design, testing, and manufacturing of custom detectors, emitters, and assemblies,” said Mark Campito, CEO at Marktech Optoelectronics. “Partnering up with Digi-Key allows us to connect with a broad range of designers that normally wouldn’t be aware that these services are available to them, to offer the market high-quality custom-made photodetectors.”

By simply filling in the form located at digikey.com or on the Marktech Optoelectronics custom detector webpage, circuit designers will now have a quick, easy way to obtain a device that is optimized for their application and mechanical design.

“As applications for photodetectors get more varied and complex, there is a need for our customers to design in components with tight specifications,” said David Stein, VP, Global Semiconductors at Digi-Key. “Having an option to obtain Marktech’s custom detectors through Digi-Key will make it easier for the design engineer and speed up the product development cycle.”

For more information, visit the Marktech Supplier Center page on the Digi-Key website or visit www.marktechopto.com.

About Marktech Optoelectronics

Founded in 1985, the Albany, New York-based Marktech Optoelectronics has built a strong industry pedigree for R&D excellence. As a renowned engineering, design, and test facility, Marktech’s unique core competencies are rooted in its field-proven capabilities to produce custom LED and photodetector components and assemblies in virtually any quantities. Standard product samples and ranges are offered to customers globally via Marktech’s longtime distribution partner, Digi-Key Corporation. In addition, the company’s engineering team has the necessary full in-house capabilities for the testing of complete electrical and optical characteristics, as well as to perform end-to-end examinations of all optical components, from die level to finished product designs. Marktech is also a Cree Solution Provider for high-brightness LEDs and materials. For more information about Marktech Optoelectronics and its product offerings, visit www.marktechopto.com.

About Digi-Key Electronics

Digi-Key Electronics, headquartered in Thief River Falls, Minn., USA, is an authorized global, full-service distributor of electronic components, offering more than five million products, with over 1.3 million in stock and available for immediate shipment, from over 650 quality name-brand manufacturers. Digi-Key also offers a wide variety of online resources such as EDA and design tools, datasheets, reference designs, instructional articles and videos, multimedia libraries, and much more. Technical support is available 24/7 via email, phone and webchat. Additional information and access to Digi-Key’s broad product offering can be found by visiting www.digikey.com.

Marktech Offers Extensive Lineup of Standard SWIR LED Emitters in a Variety of Packaging Options

Marktech Optoelectronics SWIR LED emitters
SWIR LED emitters

Marktech, a premier optoelectronic manufacturer, offers an extensive lineup of standard short wave infrared, or SWIR LED emitters in a variety of packaging options. Products in this family range from 1020nm to 1720nm with operating currents from 20mA to 350mA and can be additionally sorted for specific wavelength or power requirements.

Infrared LEDs are used for a variety of applications including optical sensors and switches, medical bioflorescence equipment, and visual inspection systems. TO-5, 18, 39, and 46 metal can packaging can be customized to include up to 7 LED die in single or multiple wavelength configurations.

SWIR LED emitters require specialized optical detectors as standard silicon detectors have a maximum sensitivity limit of approximately 1100nm.

Marktech also produces a line of InGaAs detectors that are optimized for sensing light in the SWIR range. These detectors can be obtained as an individual discrete component or combined with a silicon sensor to cover the complete spectrum of light from the visible to the SWIR range. Emission and detection can be customized as well into a single multichip package, which may or may not include additional TE cooling options.

Typical Industries Served:
Medical, security, military, communications, industrial, and agriculture

Common Applications:
Bioflorescence and blood chemistry analysis, night vision, safety equipment, currency validation, fiber optics, and inspection systems

See more near-IR emitter products and information by clicking here.

About Marktech:Founded in 1985, the Albany, New York-based Marktech Optoelectronics has built a strong industry pedigree for R&D excellence. As a renowned engineering, design, and test facility, Marktech’s unique core competencies are rooted in its field-proven capabilities to produce custom LED and photodetector components and assemblies in virtually any quantities. Standard product samples and ranges are offered to customers globally via Marktech’s longtime distribution partner, Digi-Key Corporation. In addition, the company’s engineering team has the necessary full in-house capabilities for the testing of complete electrical and optical characteristics, as well as to perform end-to-end examinations of all optical components, from die level to finished product designs. Marktech is also a Cree Solution Provider for high-brightness LEDs and materials. For more information about Marktech Optoelectronics and its product offerings, visit www.marktechopto.com.

 

Customization of Optoelectronic Emitter Materials

A Brief Summary of Part One in a Six-Part Series on Customization

>> Download a PDF of the comprehensive version of the “Customization of Optoelectronic Emitter Materials” article.

Utilizing our 30 years of experience in optoelectronics, Marktech’s customization process focuses on customer needs and applications. Instead of using standardized–but perhaps non-optimized–parts, Marktech allows advantageous custom product variations to enhance your product design.

Custom packaging and electrical sorting of products offer further differentiation. Marktech provides the designer with insights concerning custom variations–variations that optimize electrical, optical, and thermal characteristics–without the need for large volume commitments.

To solve your needs, Marktech engineers will discuss with you:

  • Application needs specific to your project
  • Optimization recommendations for component and assembly packaging, technology, and thermal and electrical parameters
  • Manufacturing of dedicated end-products in support of your specifications and needs for Optoelectronic Emitter Materials

An in-depth look at custom emitter materials

In this first installment in our six-part series on Marktech’s customization capabilities, we focus on optoelectronic emitter materials, materials typically intended for mating with compatible (and possibly customized) detectors. This article will discuss in-depth topics such as:

  • LED drive current and temperature
  • Types of die attach and wire bonding techniques for chip mounting
  • Illumination patterns and output
  • Specific examples of unique emitter products and how Marktech created a customized solution

>> Download a PDF of the comprehensive version of the “Customization of Optoelectronic Emitter Materials” article.

Related links

>> Visit Digikey for a listing of select Marktech emitter chips ranging from deep UV to the visible range to near-infrared and short-wave infrared (SWIR).

>> View a full listing of Marktech emitter chips ranging from deep UV to the visible range to near-infrared and short-wave infrared (SWIR).

>> To learn more about Marktech, optoelectronic emitters, or our start-to-finish customization capabilities, visit our website at www.marktechopto.com.

 

A Brief Introduction to Customization

A Brief Introduction to Customization
The First in a Six-Part Series

INTRO:

This introduction is the first installation in a six-part series focused on how Marktech does optoelectronic customization–both emitter and detector components and assemblies that are specifically designed for your application. The series will include in-depth analysis of materials, packaging, and testing based on our 30 years of experience in the optoelectronics field.

*****************************

Customization: To make or alter individual specifications or preferences.

Marktech’s definition of customization: The process of learning about your application and making recommendations on how to optimize your opto component or assembly performance, resulting in the manufacture of an end-product to your exact specifications…without production volume requirements.
This introduction to how Marktech does optoelectronic customization is the first installation in a six-part series focused on both emitter and detector components and assemblies that are specifically designed for your application. The series will include in-depth analysis of materials, packaging, and testing based on our 30 years of experience in the optoelectronics field.

Our goal with this series is to provide design engineers with details concerning customized components and assemblies, such as physical constraints and how to optimize electrical, optical, and thermal characteristics.

Our upcoming series topics will be as follows:

Part 1: Custom emission materials

Does die on membraneyour application require tight binning? In this post, we will explore how specific wavelengths can optimize your product’s performance. We will explain how your choice of chip and other factors, including how you drive the component, will affect degradation and the lifetime of your product. What chip mounting options are best-suited for your application? This post will cover wire bonding techniques, die attach (eutectic or conductive paste), illumination patterns, and output. A complete listing of emitter chips ranging from deep UV to the visible range to near-infrared and short wave infrared (SWIR) also will be discussed in detail. Or you can visit our online Product Selector Guide now.

Part 2: Custom detection materials

The custom design of the detector chip is a capability unique to Marktech. In this post, we will cover the custom materials that we use in our silicon detectors, including PIN photodiodes, photodiode arrays, Avalanche photodiodes, and other detector products. We’ll review your options to customize either N-type, P-type, or epi-materials to optimize chip design, meeting or exceeding your specifications for characteristics like minimum reflection, low-dark current, minimum series resistance, low capacitance, fast response, and low crosstalk. Learn more about custom detection materials from Marktech >>

Part 3: Packaging

Once you have chosen the chip, the packaging criteria comes into play next. You need to define what important criteria are needed, for example, space constraints. Packaging options include SMD (surface mount devices), COB (chip on board), through-hole devices, and TO-cans, including multi-chips, which may contain both emitter and detector chips.

Depending on your choice of chip and package, the experts at Marktech will ascertain what conditions you may be dealing with, such as heat dissipation and electromagnetic interference. In this post, we also will explore lensing options to modify radiation patterns, such as wide or narrow viewing angles, or custom illumination patterns. Learn more about our custom packaging capabilities >>

Part 4: Custom Assemblies

Does your application require multiple chips, either for emission or detection or both? What is the best material for your assembly: FR-4 to ceramic, flex, or metal core? Depending on your application, our custom design engineers will help you determine how many chips are required based on output and drive conditions. At Marktech, we have completed assemblies ranging from two chips to 140, however, there are no restrictions on the number of chips we can mount. Learn more about custom assemblies >>

Part 5: Design, Testing, and Binning

Not only can Marktech test for all optical and electrical parameters on both emission and detector components, materials, and assemblies, we also offer unique testing capabilities on detectors including spectral response up to 3000nm, quantum efficiency up to 3000nm, shunt resistance, dark current, and capacitance. On the emission side, we can offer complete testing on UV down to 250nm and up to 2600nm on SWIR devices.

Part 5 in the series will cover all of our services in design, testing, binning, and quality control. We will share details about our 10-step design and test process, which ensures that we tailor services around your specific needs and make recommendations to ensure your device is performing as intended. Learn more about Marktech’s testing and engineering services >>

Part 6: Getting Started   

Part 6 in the series will be a wrap-up summary of Parts 1 through 5 and will highlight the next steps to take if you are interested in pursuing a custom device, beginning with initial discussions with one of our application engineers. We will discuss the various steps to bring your idea from concept to prototype to finished component or assembly. Or if you are ready to get started now, contact us today!

Marktech Optoelectronics Now Offers Customization of Light Rings

Offering reflects Marktech’s enhanced capabilities in custom design and products to meet customers’ unique specifications

December 14, 2016

Customization of light rings from Marktech Optoelectronics
Customization of Light Rings

LATHAM, NEW YORK… Marktech Optoelectronics has announced that as part of its new customization program, it will now offer the customization of light rings that are precisely engineered for a customer’s specific application.

The customization of light rings will be available in FR-4, metal core, and ceramic materials. Marktech’s chip offerings range from 280nm in the UV range though visible to near IR; white light ring options can be made with color temperatures ranging from warm (2600K) to cool (10000K). Emitter or detector chips– or a combination of both–can be included in custom light ring packages. In most cases, Marktech can test to plus or minus 1 nanometer. Their size offerings range from 4mm up to any required size.

“Smaller size light rings are typically manufactured with COB [chip on board] technology, however, standard surface mount components such as 0805, 1206, and PLCC type packages are also available depending on the optical performance required,” notes Vincent Forte, the chief technology officer at Marktech.

“There are numerous applications where the customization of light rings is the optimal solution,” continues Forte. “We’re seeing clients use them in analytical instruments for the biochemical industry, medical and scientific analysis, endoscopy, critical illumination, and security cameras.”

Marktech is equipped to manufacture both large volume as well as small production runs and serves small, medium, and large manufacturers. For more information on Marktech’s customization program go to http://www.marktechopto.com/marktech-customization.cfm.

About Marktech:
Founded in 1985, the Albany, New York-based Marktech Optoelectronics has built a strong industry pedigree for R&D excellence. As a renowned engineering, design, and test facility, Marktech’s unique core competencies are rooted in its field-proven capabilities to produce custom LED and photodetector components and assemblies in virtually any quantities. Standard product samples and ranges are offered to customers globally via Marktech’s longtime distribution partner, Digi-Key Corporation. In addition, the company’s engineering team has the necessary full in-house capabilities for the testing of complete electrical and optical characteristics, as well as to perform end-to-end examinations of all optical components, from die level to finished product designs. Marktech is also a Cree Solution Provider for high-brightness LEDs and materials. For more information about Marktech Optoelectronics and its product offerings, visit www.marktechopto.com.

Near-IR LEDs: Light With the Power to Heal

Near-IR LEDs are increasingly being used in the medical field for everything from endoscopy to blood analysis. But a new therapeutic use of light also is emerging, thanks to research being conducted by NASA.

A “lightbulb” moment for researchers

In an attempt to put a human on Mars, NASA and other space exploration programs from around the world are pushing the envelope with the length of astronauts’ space missions. But during these long periods of time in weightlessness, astronauts commonly suffer from muscle and bone atrophy. On top of that, minor injuries do not heal as easily in microgravity.

NASA initially discovered that the LEDs being used for plant growth experiments in space also accelerated the healing process for wounds. Further research began to narrow in on the optimal wavelengths and found that when used in conjunction with hyperbaric oxygen, the best results were achieved.

The NASA scientists have discovered that near-infrared, or Near-IR LEDs in the 630nm to 880nm range are the most effective in promoting cell growth and thus stimulating faster healing. For surface healing of the skin, researchers found that the most suitable wavelength is around 660nm; for deeper wound healing, approximately 880nm appears to be most effective.

Near-IR light also shows promise for treating the muscle and bone atrophy suffered by astronauts on those long space missions. However, this emerging LED light is creating interest not only in space exploration and military applications (it’s difficult for wounds to heal in a low-oxygen/high-carbon dioxide submarine atmosphere, which lacks sunlight too), but also in civilian medical care. The research showed more rapid healing for wounds and injuries such as burns, fractures, radiation tissue damage, skin grafts, oral sores caused by chemotherapy and radiation treatments, and surgical wounds, and it even helps speed the healing of diabetic skin ulcers.

How light works to heal

Researchers believe that the Near-IR LED light therapy works by stimulating color-sensitive chemicals in the mitochondria of body tissues’ cells. Light wavelengths from 680nm to 880nm can pass through skin and muscle tissue, promoting tissue and deep wound healing. Light with higher wavelengths are able to penetrate deeper into the body. Results of clinical trials on various single- and mixed-wavelength LED lamps show that near-IR light therapy accelerates cell growth 150 to 200 percent when compared to non-treated cells.

At the Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in Vienna, Austria, researchers took the initial NASA findings on the potential of near-IR and expanded them to study 470nm blue light’s impact on tissue regeneration. The Austrian researchers discovered that blue light also has a significant and positive impact on the human body’s ability to heal itself (when compared to no light therapy).

Additional research is being conducted to examine the ability of specific wavelength LED light to treat eye disorders such as lazy eye, diabetic macular degeneration, and retinopathy, and to destroy some cancer cells in conjunction with other cancer treatments. Researchers already have used red LED probes to successfully treat brain tumors. Deeply-penetrating wavelengths are being studied for treatment of cranial traumas, and potentially, to help those suffering from dementia.

Choosing the right LED options

Among the numerous benefits of Near-IR LED medical light therapy devices are the cost-effectiveness and relatively simple construction. Depending on the application, therapeutic light products may utilize LEDs with multiple wavelengths or a single wavelength and can be assembled into large, flat devices for treating a sizeable surface area, such as burns or large surgical sites.

As noted above, the light’s necessary penetration depth–depending on whether the device is for use on surface tissue or deeper muscles and bones–will determine which LED wavelength is needed. Other factors to consider are energy use and power/heat output.

Marktech Optoelectronics offers visible red LEDs and near-IR emitters, as well as blue light LEDs, and we are happy to help you select the right LED and package for your unique needs. Check out our online product selector guide.

But Marktech’s value goes beyond a large product selection. We have an on-site team of highly experienced engineers who can guide you through the entire product development process, from prototyping to quality analysis to manufacturing. And if we don’t have the exact product or package that you need, we are one of the only optoelectronics companies in the U.S. that offers custom assemblies.

So, what do you want to build? Contact Marktech today, and let’s get started!

The 10-Step Difference: Marktech’s Design & Test Services

Faster to market. It’s an aspiration for nearly every new product produced in the modern era (since time is money!). Yet with the complexities of optoelectronics-based technology, haste has the potential to make some very costly waste if the proper die and package are not selected or put into the right configuration.

Even if you are an experienced product engineer, you may feel uncertain about which specific LED die, wavelength, or package would best-suit your design. Marktech can help.

We are fortunate to have a team of expert engineers who specialize in LED application support and are happy to share their knowledge with you, assisting you along each step. Many other optoelectronics companies are not willing or able to provide their customers with this added level of service.

On top of the highest-quality optoelectronics products, Marktech offers you and your company…

Our Proven 10-Step Design & Test Process

  1. Initial contact: Tell us about your idea for a new product or an enhancement to an existing device; we keep all information confidential.
  2. Technical sales: One of our experienced engineers will reach out to you to discuss your unique needs and which product(s) would be best-suited.
  3. Design & development: If a standard product won’t do, our engineers will design and produce a custom LED assembly to meet your requirements.
  4. Prototype: We have the expert capabilities needed to build a prototype of your product.
  5. Testing: Our onsite components lab can perform a variety of tests that validate wavelength, measure angles, simulate specific conditions, and more.
  6. Customer approval: Steps 1-5 are not complete until your expectations are met or exceeded.
  7. Production: Marktech will not only provide the necessary LED components, we also can manage the process for high-volume production of your product.
  8. Quality control & assurance: We will perform numerous tests to verify the quality of your end-product is as-expected.
  9. Delivery: This is the day you’ve been looking forward to!
  10. Follow-Up: We will reach out to ensure you are fully satisfied with your products.

With our LED materials, components, design and testing assistance, and production management capabilities, Marktech can truly be your one-stop source to get your optoelectronics product to market in the quickest time possible.

Related: View a video about our design and test services capabilities

So what do you want to build? Contact us today to learn more about how we can assist you with design and testing.