Marktech Optoelectronics
3 Northway Lane North
Latham, NY 12110
Fax: +1-785-4725
Email:
in**@ma**********.com
The broadest line of both silicon and InGaAs detectors commercially available.
Indium Gallium Arsenide (InGaAs) PIN photodiodes are made using InGaAs/InP technology.
Cutting-edge silicon photodetectors that excel in precise detection of light ranging in wavelength from 250nm to 1100nm
Monolithic “quads” or quadrant photodiodes (QPDs) are 2 X 2 photodiode arrays with four planar diffused photodiode elements or segments.
Marktech offers a broad line of silicon photo Transistors in a variety of package types ranging from miniature metal can to ceramic packages.
Our High-Reliability Photoreflectors are sensors that contain both the LED emitter and photodetector functions within a single package.
Marktech Si APD’s offer low-level light and short pulse detections of wavelengths between 400 nm and 1100 nm.
UV detectors are offered in a variety of TO metal-can type packages from TO-18 to TO-39 with special UV glass lens to insure optimum lifetime and the least amount of material degradation
With the ability to detect light in the UV, visible, and infrared spectrums, photo detectors, photo transistors, and photodiodes are being used in increasingly more applications.
Marktech offers the broadest range of emitters commercially available ranging from 235nm to 4300nm across the UV, visible, NIR, SWIR, and MWIR spectral ranges.
Marktech offers the broadest range of UV LEDs commercially available ranging from 235nm to 400nm including UVA, UVB, UVC, and deep UVC LEDs.
Our advanced line of visible LED products is engineered to deliver high-quality, energy-efficient lighting solutions across various applications from 400nm to 700nm..
Our NIR LED wavelength range is typically from 700nm to 1000nm, extending into wavelengths invisible to the human eye but crucial for numerous technological and scientific applications.
Our standard product offering includes wavelengths from 1020nm to 4300nm and operating currents ranging from 20mA to 350mA for high-power applications.
Our Point Source LEDs are specifically engineered for optical encoders, edge sensors, and other critical applications that demand highly focused light with minimal dispersion.
Multi-LED chips in a single package, our multiple wavelength LEDs are engineered to address a myriad of applications across the UV, visible, NIR, SWIR, and MWIR spectral ranges
Designed to produce a highly defined red dot or reticle, facilitating accurate aiming without revealing the location to the target.
Ideally suited for applications including edge sensing, line sensing, coin bill validation, and bar code reading
Our panels are crafted to deliver uniform, vibrant illumination across a wide range of applications, from consumer electronics to industrial displays.
Crafted with the latest LED technology, these rings provide adjustable illumination to meet specific needs, ensuring optimal visibility and enhancing the quality of your projects.
As a proud CREE LED Solution Provider for over a decade, Marktech offers comprehensive engineering support, including design, binning, and material selection, alongside custom packaging options for specialized applications.
CREE LED through-hole emitters, designed for high-temperature and moisture environments with UV-resistant optical-grade epoxy, offer a range of colors for versatile applications in signage and lighting.
CREE High Brightness (HB) SMD LEDs are the brightest, most reliable architectural, video, signage, scoreboard, roadway, and specialty LEDs available today.
CREE LED’s P4 series represents a leap in LED design, combining efficiency with aesthetic versatility to meet the demands of modern lighting applications.
Marktech’s CREE LED XLamp® offerings on aluminum core starboards simplify LED integration for designers, providing a range of colors and angles on compact boards for easy testing and implementation in varied lighting applications.
Marktech Optoelectronics introduces its new product line of CREE LED die, including the EZ1350 Series Die, packaged in TO-cans (TO-18 and TO-39 outlines) designed for precision and reliability in demanding applications with protection against environmental factors like moisture and dust.
Marktech Optoelectronics combines over 40 years of expertise in optoelectronics with a focus on customized engineering solutions, addressing specific customer needs and applications.
Custom photodiode detectors are designed to meet unique customer requirements, offering specialized performance features and cost savings through optimizations such as integrated filters, photodiode arrays, and hybridization.
Through our vertically integrated manufacturing facilities in California and Japan, we offer custom LED solutions, including packaging and optoelectrical categorization, enhancing product design and market readiness.
Multiple LED dies combined in a single package are engineered to address various applications across the UV, visible, NIR, SWIR, and MWIR spectral ranges.
To succeed, you need the exact optoelectronic package custom-designed and manufactured for your application, including hermetic metal SMD, TO-can, plastic SMD, and molded through-hole packaging.
Made-to-order semiconductor chips (die) and wafers are designed and fabricated to fit your needs. Standard dies are available in specific wavelengths for high-volume production applications.
Bare and encapsulated LEDs, photodiodes, and other components are assembled on FR4, metal-cored, and flexible circuit boards, ready for production.
Learn about the latest trends, devices, and potential applications.
The latest news and announcements from Marktech Optoelectronics.
Detailed information about common uses for Marktech Optoelectronics devices.
In depth discussions on LEDs, Detectors and the science behind them.
Become familiar with common terminology and concepts for LED Devices.
List of common concepts and definitions for Photodiodes.
As mentioned earlier, the luminous intensity of LED lamps characteristically declines slowly with use. Select LED lamps according to the level of reliability require in the equipment in which they will be used. Note the following points when requesting LED lamp reliability data from Toshiba, or when using equipment to test the longevity characteristics.
It may be useful to calculate such information as the longevity characteristics (at high temperatures, normal temperatures, and low temperatures) of a discrete LEDs in an environment in which the equipment will be actually used, and to test those calculations by test operation of the equipment.
Depending on the material used in an LED, operating the LED under high-humidity, high-temperature conditions can dramatically reduce its lifetime. When an LED may be used under high-humidity, high-temperature conditions, be sure to check its longevity characteristics.
Because lattice defects increase with use, the luminous intensity of LEDs gradually declines. The speed of accumulation of lattice defects depends on the magnitude of the forward current.
When using a LED under conditions where factors such as vibration, shock, gas, or ultra-violet affect the leads or resin, Marktech recommends testing the LED separately for each potential affecting factor.
As described in the section on the structure of LEDs, placing excessive stress on an LED or subjecting it to extreme temperature changes may result in its disconnection. Factor as differences in the thermal coefficient of expansion and varying levels of mechanical stress can adversely effect chip mounting, bonding wire, leads and resin. The normal test for disconnected LEDs is the temperature cycle test.
Toshiba temperature cycle tests are normally performed on the LED lamp structure at the upper-limit storage temperature and the lower-limit storage temperature.
LED lamps are incorporated into equipment by soldering. The reliability of an LED which has been soldered into a piece of equipment cannot be deduced from the results of temperature cycle tests on loose LEDs that have not been incorporated into a piece of equipment. Hence, Marktech recommends conducting temperature cycle testing and reliability testing on LEDs which have already been soldered into place in a piece of equipment.
LED lamp longevity simulation techniques currently in use have failed to establish a correlation between longevity and the tendency for luminosity to deteriorate in actual applications. A further problem is the difference between the ambient temperatures for loose LED lamps not used in equipment and the ambient temperature for those combined into equipment. The following examples show how simulation can be to obtain such information. For simplicity the characteristics of a hypothetical LED lamp are used. Example (a): Simulate the longevity of an LED lamp incorporated in control equipment installed in a room in which high-temperature equipment is operating.
High-temperature equipment operates for 1,080 hours a year (three hours a day x 360 days) with a forward current of 20 mA
LED lamp ambient temperature is 60°C, 60 days per year, humidity=”90%”
LED lamp ambient temperature is 40°C, 90 days per year, humidity=”90%”
LED lamp ambient temperature is 25°C, 210 days per year, humidity=”90%”
LED lamp longevity characteristics: Figure 17 shows the longevity characteristics of LED lamps.
REL Luminosity vs Time
Calculating the LED lamp operating time per year by ambient temperature.
Condition 1 operating time: 3 hours x 60 days = 180 hours
Condition 2 operating time: 3 hours x 90 days = 270 hours
Condition 3 operating time: 3 hours x 210 days = 630 hours
The deterioration characteristics of Figure 17 were applied to each ambient temperature using the above rates of operation.
Figure 18 shows the results. In the example, the longevity characteristics are simulated by the approximate equation exp(-8 t), with 8 changing each time. Where the curve time constants for the characteristics in Figure 17 are 81, 82, 83 and luminosity reduction rate = exp (-8nt), the calculation is made by assigning 8 to each operating time.
Note: It is not possible to represent all the different longevity characteristics by a single approximate equation. It would be risky to extrapolate the characteristics over ten or 20 years based on the above examples and except the results to be accurate, even if the daily operating time were short. REL Luminosity Residue vs Time 1
Figure 18 – Simulation example
Recent improvements have reduced the tendency for LED lamp luminosity to decline with use. The results of long-term studies of longevity characteristics now show that the luminosity need not always attenuate. The decline in luminosity that occurs during use has been evaluated using a Wiebel distribution function. Sometimes, even after thousands of hours of longevity testing, the M-value does not change thousands of hours (see Figure 19).
REL Luminosity Residue vs Time 2
Figure 19 – Predictions from longevity test results (a), (b), (c)
With the tendency for luminosity to deteriorate already confirmed by the results of long-term longevity tests in Figure 19 (a) and (b), longevity can now be predicted relatively easily. However, in Figure 19 (c), no deterioration is seen, even after 10,000 hours of use. It is not possible to decide whether deterioration proeeds in the (c-1) direction or the (c-2) direction. In some cases, the deterioration in the M-value is large after a certain point, as in (c-2).
The absence of luminosity reduction during longevity tests does not mean that the LED lamp will not deteriorate at some point in its life. When determining the location in which a piece of equipment incorporating an LED is to be used, if necessary perform longevity testing under accelerated conditions, so as to predict the longevity characteristics based on the actual conditions of use.
Marktech Optoelectronics
3 Northway Lane North
Latham, NY 12110
Fax: +1-785-4725
Email:
in**@ma**********.com